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a b s t r a c t

Background: In most low- and middle-income countries, hepatitis A virus (HAV) is shifting or expected
to shift from high endemicity to intermediate or low endemicity. A decreased risk of HAV infection will
cause an increase in the average age at infection and will therefore increase the proportion of infections
that results in severe disease. Mathematical models can provide insights into the factors contributing to
this epidemiological transition.
Methods: An MSLIR compartmental dynamic transmission model stratified by age and setting (rural and
urban) was developed and calibrated with demographic, environmental, and epidemiological data from
Thailand. HAV transmission was modeled as a function of urbanization and access to clean drinking water.
The model was used to project various epidemiological measures.
Results: The age at midpoint of population immunity remains considerably younger in rural areas than in
urban areas. The mean age of symptomatic hepatitis A infection in Thailand has shifted from childhood
toward early adulthood in rural areas and is transitioning from early adulthood toward middle adulthood
in urban areas. The model showed a significant decrease in incidence rates of total and symptomatic
infections in rural and urban settings in Thailand over the past several decades as water access has
increased, although the overall incidence rate of symptomatic HAV is projected to slightly increase in the

coming decades.
Conclusions: Modeling the relationship between water, urbanization, and HAV endemicity is a novel
approach in the estimation of HAV epidemiological trends and future projections. This approach provides
insights about the shifting HAV epidemiology and could be used to evaluate the public health impact of
vaccination and other interventions in a diversity of settings.
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© 2015 The Authors. P

. Introduction

Hepatitis A virus (HAV) is associated with inadequate water
nd sanitation as well as poor hygiene; increases in water access
ead to reduced risk of waterborne HAV transmission, and the
mproved hygiene stemming from water access also reduces the
ate of person-to-person transmission. The clinical presentation of
epatitis A varies with age. Few children younger than 6 years show
ymptoms, while most older children and adults develop an icteric
nfection (jaundice). Following infection, patients usually acquire
life-long immunity against HAV with no chronic development of

he disease [1].

HAV endemicity can be conveniently characterized in a region

y using the age at midpoint of population immunity, which
s the youngest age at which at least 50% of the population is
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HAV-seropositive [2]. The prevalence of HAV infection varies
across geographical regions, with low endemicity in Western
Europe, Northern America, Japan and Australia, and intermediate
or high endemicity in most of Central and South America, Africa
and South Asia [3,4]. However, most low- and middle-income
countries are shifting or are expected to shift toward lower risk
of HAV infection and therefore toward lower endemicity in the
coming years. As the HAV incidence decreases, the average age at
infection increases from early childhood toward adolescence and
adulthood [3,5]. Because the severity of symptoms increases with
age, delayed age at infection can lead to a higher disease burden in
populations that do not adopt appropriate vaccination strategies.

In both urban and rural regions of countries where endemicity
is shifting to lower levels or is foreseen to do so, mathematical
models of current and future HAV epidemiology may inform the
public health community by providing insight about where HAV
www.manaraa.com

vaccination may be needed to reduce the burden of HAV disease
[6,7]. In previous HAV models, the risk of a susceptible individ-
ual contracting HAV – that is, the force of infection (FOI) – has
usually been modeled as a decreasing function of calendar time
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8–10]. These transmission models generally have not attempted
o account for changes in HAV transmission over time as a conse-
uence of improvements in socioeconomic conditions and hygiene,
ven though field studies and meta-analyses have shown a signif-
cant correlation between these factors and HAV incidence [4,8].
here is a particularly strong association between the HAV FOI and
ccess to clean drinking water [8].

In Thailand, seroprevalence data indicate that an epidemiologi-
al shift to lower endemicity has occurred in both rural and urban
reas, although rural areas continue to have higher seroprevalence
ates [11–13]. Studies conducted in the late 1970s reported that
bout half of all 5-year-olds had already developed immunity to
epatitis A as a result of prior infection and that nearly all adults had
nti-HAV antibodies [14–16]. By the late 1980s, the age at midpoint
f population immunity had risen to about 10 years [17,18]. By
he early 2000s, the midpoint had shifted toward early adulthood
13,19–22], though the age at midpoint of population immunity
emained in childhood in some rural areas [12,23,24]. This shift to
ower incidence has enlarged the frequency and scale of outbreaks
f symptomatic hepatitis A disease in Thailand [25].

In Thailand, urbanization is occurring at a rapid rate. The per-
entage of the population living in urban areas increased from 17%
n 1950 to 44% in 2010, and is projected to rise to 72% in 2050
26]. Access to clean drinking water has also increased since 1970,
specially in rural areas that previously had very limited access to
afe water [27]. These conditions make Thailand an excellent case
tudy for exploring the HAV endemicity shift that occurs as a func-
ion of urbanization and access to clean drinking water. This paper
resents the results of a new HAV model applied to rural and urban
ata from Thailand.

. Methods

.1. Modeling key steps and data used

The main steps to the modeling process, and the key data inputs
Table 1), were as follows:

1) Fit parametric models to age-specific seroprevalence data from
several sites to obtain two cross-sectional synthesized sero-
prevalence curves, one for rural settings [12,13] and one for
urban locations [13] (Supplement A).

2) Estimate the demographic model parameters by calibrating
the demographic model outcomes to United Nations data and
projections about total population sizes by age [28], and the
percentage of the population living in urban areas [26] (Fig. 1A,
Supplement B). Aging takes place continuously over time in
the model. The model assumed a fixed population age distri-
bution before 1950 [29], but the demographic model is fully
dynamic after 1950, with migration rates from rural to urban
areas estimated by calibrating the demographic model to the
calendar-year-specific percentage of the national population
living in urban areas. Finally, the model also uses age-specific
mortality rates [28,30].

3) Estimate the parameters of the transmission model by calibrat-
ing age-specific HAV-seropositive prevalence rates in rural and
urban areas projected by the model to the two synthesized sero-
prevalence curves, one for rural and one for urban areas. The
decrease in HAV transmission is modeled as a function of the
access to clean drinking water over time in each of the two
settings [27] (Fig. 1B, Supplement C). The model is determi-

nistic and there are no confidence intervals on the estimated
parameters. Their estimation by minimizing the total sum of
squares between the model-projected seroprevalence and the
two synthesized seroprevalence curves allowed the projected
ne 34 (2016) 555–562

seroprevalence curves by age in each setting (rural and urban)
to be as close as possible to the two synthesized seroprevalence
curves.

(4) Use the model with the best-fit parameter estimates to project
epidemiological outcomes over time. Those outcomes are the
youngest age at which 50% are HAV-seropositive, the mean age
of symptomatic infection, and the incidence rates of HAV infec-
tions (all infections and symptomatic infections) over time.
There are no confidence intervals on the model outcomes as
the model is a deterministic one.

All numerical simulations were carried out in MATLAB R2013a
(The MathWorks Inc., Natick, MA, USA).

2.2. MSLIR model of HAV natural history

A MSLIR compartmental deterministic dynamic transmission
model (referred to as the transmission model in the sequel) with five
infection states was used for the natural history of HAV: protection
by maternal antibodies (M), susceptibility to HAV (S), a latent state
of being infected by HAV but not yet infectious (L), an infectious
period (I), and a recovered state in which infection has conferred
life-long natural immunity (R). Individuals flow from one state to
another continuously over time, with individuals flowing from an
infection state in a given age group to the same infection state in the
next age group. The age-specific proportions of symptomatic HAV
infections used the model of Armstrong and Bell [9] (Supplement
D). The duration in each state is assumed to have an exponential
distribution with a mean duration of protection by maternal anti-
bodies of 9 months [31,32], a mean duration in the latent state of
14 days, and a mean duration of infectiousness of 21 days [33].

The model is stratified by (1) age, with one-year age groups from
0–1 up to 99–100 years, to account for evolving demographics and
age-specific percentages of icteric infections [9], and (2) setting
(separate compartments for rural and urban areas). There is one
compartment for each combination of infection state, age group
and setting (1000 compartments in total). The model assumed ran-
dom mixing with respect to age due to the difficulty in estimating
relative rates of direct and waterborne transmission of HAV and to
reduce model complexity. For the setting stratification, the model
assumed that contacts between individuals only occur within the
same setting. The only interactions between rural and urban areas
are related to rural-to-urban migration over time.

2.3. Force of infection

For a given setting, the FOI was considered to be the sum of the
risk caused by person-to-person transmission and the risk from
all other causes. The risk caused by person-to-person transmis-
sion was assumed to be the most important quantitatively and
to depend multiplicatively on three factors: (1) the percentage of
infectious individuals in that setting, (2) a setting-specific transmis-
sion parameter, ˇs, accounting for the contacts between individuals
and the per-contact risk of HAV transmission, and (3) a time-
varying factor accounting for the decrease in HAV transmission
over time, modeled as a setting-specific parametric function of the
setting-specific percentage of the population having access to clean
drinking water. More precisely, the FOI in setting s (rural or urban)
at time t, is given by:

FOIs(t) = Fs(Ws(t)) × (As + ˇs × Is(t))
www.manaraa.com

where

• Fs is the factor of HAV transmission in setting s, with Fs modeled
as a decreasing parametric function of Ws(t).
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Table 1
Data sources.

Type Details and source

Demographic data Population size over time (stratified by 5-year age groups, by 5 calendar years periods) [28]
Mortality with age-specific death rates [28,30]
Country-specific percentages of urban and rural population [26]

Epidemiological data Urban seroprevalence data from three cities (Chaingrai, Nakhonsrithammarat, and Udonthani), with 2-year
seroprevalence rates for pediatric age groups and 10-year rates for adult age groups [13]; the mean prevalence across
the three cities for each age group was taken as the overall urban prevalence for the age group
Rural seroprevalence data for Chonburi (near Bangkok) [13] and Umphang (near the Thai–Myanmar border) [12]; a
separate best-fit curve was fit to each dataset and the mean of the two fits was used as synthesized curve in rural
Thailand

Access to clean drinking water Percentage of the population with access to clean drinking water over 1970–2008 [27]; data were adjusted to ensure
access increased monotonically over time, and a linear increase in access was assumed for 1950–1970 due to lack of
data

F ar yea
H es: da

•

•

•
•

ig. 1. (A) Percentage of the total population in urban areas, over time, by 5 calend
AV-seropositive by age (synthesized seroprevalence curves by setting). Dashed lin

Ws(t) is the percentage of individuals in setting s with access to
clean drinking water as a function of calendar time t.
As is the component of the FOI not related to person-to-person

transmission in setting s.
ˇs is the transmission parameter in setting s.
Is(t) is the proportion of individuals infected in setting s, as a
function of calendar time t.
rs; (B) percentage with access to clean drinking water over time; (C) percentage of
ta; continuous lines: adjusted data; green: rural setting; blue: urban setting.

The risk from all causes other than person-to-person trans-
mission, including water, foodborne transmission and importation
of HAV, was taken as a small fraction of the setting-specific FOI
www.manaraa.com

at the steady state (before 1950) multiplied by the same time-
varying factor used for the person-to-person transmission. Because
the percentage of residents with access to clean drinking water in
both rural and urban settings was nearly 100% by 2008 (Fig. 1B,
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upplement C), the percentage was assumed to remain the same
rom 2008 onwards.

The transmission model has 10 parameters, of which 5 are spe-
ific to each setting:

the transmission parameter ˇ
˛: percentage of individuals with access to clean drinking water
at which F(p) starts to decrease, such that F(˛) = 0.99 (the maximal
value of F(p) being 1)
ı: percentage of individuals with access to clean drinking water at
which F(p) has its inflexion point, counted starting from ˛ (hence,
the inflexion point is at the value ˛ + ı)
f: maximal fold decrease for F(p), from its maximal value (1) to
its minimal value.
p1950: the percentage of the population with access to clean drink-
ing water in 1950 as a fraction of the percentage with access to
clean drinking water in 1970.

For each setting (rural and urban), there is a function F(p) with 3
etting-specific parameters ˛, ı and f, that characterize the decrease
f HAV transmission as a function of the percentage of the popula-
ion with access to clean drinking water p in that setting. F(p) was

odeled as a sigmoidal (‘S-shape’) function. This type of function
as chosen because it decreases monotonically without having too
any parameters. The function F(p) is given by

(p) = L + H × (1 − tanh(s × (p − (˛ + ı))))

here p is the percentage of the population with access
o clean drinking water, L = 1/f, H = (1 – (1/f))/2, s = –Atanh(x)/ı,
= (L + H – 0.99 × (L + 2 × H))/H. Note that neither ˛, ˛ + ı nor the
alue of p at which F(p) is ceiling at its minimal value neces-
arily have to be for a value of p ≤ 100%. tanh and Atanh denote
he hyperbolic tangent and inverse hyperbolic tangent functions
espectively.

To estimate those five parameters in each setting, the model
as calibrated to both synthesized seroprevalence curves simulta-
eously (Supplement E).

.4. Base case and sensitivity analyses

For the base case, the per-susceptible risk of HAV infection not
elated to person-to-person transmission was assumed to be 10%
f the setting-specific FOI at steady state (prior to 1950), and the
elative difference between the three parameters (˛, ı, and f) of the
ransmission model in the rural and urban settings was constrained
o be at most 10%. The main model projections for the base case are
resented in Section 3.

A sensitivity analysis was conducted with respect to the per-
usceptible rate of HAV infection not related to person-to-person
ransmission, using alternative values of 0%, 5%, 10%, and 20%
f the FOI at steady state prior to 1950. The parameters ˛, ı, f
ere either unconstrained, or constrained to have a relative differ-

nce of at most 10% or 25% between the rural and urban settings,
ith or without the same constraint on ˇ (using a maximal rel-

tive difference of 25% for the 4 parameters). The transmission
odel was calibrated to the synthesized seroprevalence curves for
6 scenarios (4 scenarios with respect to the FOI and 4 scenarios
ith respect to the constraints). The range of the model outcomes

or the 8 most relevant scenarios of the sensitivity analyses are
resented in Supplement G.
ne 34 (2016) 555–562

3. Results

3.1. Transmission level as a function of access to water

The calibration of the transmission model to the two syn-
thesized seroprevalence curves shown in Fig. 1C allowed the
parameters of the transmission model to be estimated. The model
achieved a good fit in both rural and urban settings. The model
estimated consistently higher transmission levels in rural than in
urban areas, with a 2.4- to 5.3-fold difference in transmission level
between settings over the 1950–2008 period. When access to clean
drinking water was 100% versus 0%, the model estimated a 3.3- and
4.1-fold decrease in transmission in rural and urban areas, respec-
tively (Fig. 2A). Using the setting-specific access to clean drinking
water between 1950 and 2008, a 3.1- and 3.3-fold decrease in
transmission was estimated in rural and urban areas, respectively
(Fig. 2B).

3.2. Seroprevalence

Fig. 3 shows the projected age-seroprevalence curves every 25
years from 1950 to 2050 in rural (Fig. 3A) and urban (Fig. 3B) areas
and at the national level (Fig. 3C). The model also estimated the
age at midpoint of population immunity, defined as the first age at
which 50% of individuals are HAV-seropositive, to be consistently
higher in urban than in rural areas and to have also progres-
sively increased over time in both settings (Fig. 4A and Table 2).
At the national level (and in rural and urban areas, respectively),
the youngest age at which 50% of the population is estimated to
be HAV-seropositive has increased from 6 years (5 and 19 years,
respectively) in 1950 to 19 years (15 and 29, respectively) in 2000,
and is projected to further increase to 40 years (33 and 45 years,
respectively) in 2025 and 61 years (45 and 66 years, respectively)
in 2050. Rural areas had a high endemicity level in 1950 and have
shifted toward intermediate endemicity, while urban areas had
intermediate endemicity in 1950 and have shifted toward low
endemicity.

3.3. Mean age of symptomatic infection

The mean age of symptomatic infection estimated by the model
was consistently higher in urban than in rural areas and progres-
sively increasing over time in both settings (Table 2 and Fig. 4B).
At the national level (and in rural and urban areas, respectively),
the mean age of symptomatic infection was estimated to have
increased from 13 years (11 and 21 years, respectively) in 1950
to 18 years (18 and 25 years, respectively) in 2000. The mean age of
symptomatic infection is projected to further increase to 29 years
(28 and 33 years, respectively) in 2025 and 40 years (38 and 43
years, respectively) in 2050.

3.4. Incidence

The model-projected annual incidence rate of all HAV infec-
tions has decreased continuously over time (Table 2 and Fig. 4C).
Model-projected incidence rates (per 100,000) of symptomatic
HAV infections decreased between 1950 and 2000, from 794 to 665
in rural areas, from 962 to 88 in urban areas, and from 822 to 484 at
the country level (Fig. 4D and Table 2). The model shows a relative
increase during the next decades, mostly in the rural areas (Table
www.manaraa.com

2 and Fig. 4D). However, the annual incidence rate of symptomatic
HAV at the national level is projected by the model to be lower than
before 2000 and to remain between about 200 and 300 per 100,000
at the national level between 2025 and 2050 (Table 2 and Fig. 4D).
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Fig. 2. (A) Transmission level** vs. percentage with access to clean drinking water and (B) derived transmission level** vs. calendar year. **Transmission level = setting-specific
transmission parameter (ˇ) times setting-specific factor for transmission; green: rural setting. blue: urban setting.

Fig. 3. Model-projected percentage anti-HAV IgG seropositive in rural (A), urban (B) and national (C) settings. Black: 1950; blue: 1975; green: 2000; magenta: 2025; red:
2050; blue stars: years of surveys (2005–2010 for the rural setting, 2005 for the urban setting, 2010 as reference year at the national level).
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Fig. 4. Epidemiological outcomes over time. (A) Projected youngest age at which 50% of the population is anti-HAV IgG seropositive as result of past infection (the age
at midpoint of population immunity or population susceptibility); (B) projected mean age of symptomatic HAV infection; (C) projected annual incidence rate of all HAV
infections, per 100,000; and (D) projected annual incidence rate of symptomatic HAV infections, per 100,000. Green: rural setting; blue: urban setting; black: country level.

Table 2
Projections from the model over time.

Outcome Setting Calendar year

1950 1975 2000 2025 2050

Youngest age at which 50% are HAV-seropositive Rural 5 5 15 33 45
Urban 19 17 29 45 66
Total 6 7 19 40 61

Mean age of symptomatic infection Rural 11 11 18 28 38
Urban 21 20 25 33 43
Total 13 13 18 29 40

Incidence rate of all HAV infections, per 100,000 Rural 3022 2612 1246 545 763
Urban 1915 1348 136 98 130
Total 2839 2311 897 275 308

4

t
f
o
t

Incidence rate of symptomatic HAV infections, per 100,000 Rural
Urban
Total

. Discussion

The present transmission model is, to the best of our knowledge,

he first model explicitly estimating the risk of HAV infection as a
unction of urbanization and access to clean drinking water. Previ-
us mathematical models have linked socioeconomic development
o transmission [8], modeled the FOI from seroprevalence data [34],
794 751 665 379 562
962 681 88 72 100
822 735 484 194 231

determined cohort effects [35], applied a catalytic model to deter-
mine incidence rates [36] as well as prevalence rates and the FOI [5],
assessed periodic oscillations of the FOI [37], used dynamic models
www.manaraa.com

to assess the impact of vaccination on HAV infection evolution over
time [10,38,39], assessed HAV dynamics by using individual-based
models [40], and calculated the cost-effectiveness of vaccination
[41]. This new model shows that increases in access to clean water
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nd urbanization in Thailand can explain the progressive epidemio-
ogical shift toward lower endemicity levels. The model’s projection
f increasing average ages of symptomatic cases and decreased
eroprevalence over time are consistent with data from field stud-
es in Thailand [15,17,18,20]. Also, Poovorawan et al. [25] reported
median age at infection of 22 years during an outbreak in 2012 in
rural setting, which lies within the range projected by the model

or the mean age of symptomatic infection in the rural setting (18
ears in 2000 and 28 years in 2025). The trends projected by this
odel are a good match to the general pattern for HAV endemi-

ity observed in middle-income countries in every region of the
orld [3]. In middle-income countries, a significant decrease in

eroprevalence typically occurs as access to clean water increases.
tudies from middle-income countries also typically show a lag
n this epidemiological shift in the rural setting as compared to
he urban setting, and this is suspected to be related to a faster
ncrease in access to water and sanitation in urban areas. This model
or Thailand builds on what has been observed in field studies in

any countries, and the model allows us to make projections into
he future and to explore the dynamics of the association between
ater and transmission in different settings (rural vs. urban).

The model presented here has several strengths. It is fully
ynamic from 1950 onwards, in terms of both demography (includ-

ng urbanization) and epidemiology, and is stratified by age to
ccount for changing demographics and the age-specific risk of
ymptomatic icteric HAV infections. The model is also stratified
y setting, with sub-populations dynamically coupled through the
rogressive migration from rural to urban areas over time. Rural-to-
rban migration is an important cause of the decrease in incidence

n Thailand. Even if rural incidence remained high, the migration of
majority of the population to urban areas would be sufficient to

ause a national-level shift toward lower endemicity.
However, several limitations require cautious interpretation of

he results. The model assumed that rural and urban areas had the
ame age distributions and that rural-to-urban migration occurred
t the same rate for all ages. The model assumed that all newborns
ere immune at birth due to maternal antibodies, even though an

ncreasing proportion of infants may enter directly into the suscep-
ible state because their mothers remain HAV-seronegative at the
ime of pregnancy. In the absence of data about the magnitude of
he risk of HAV infection caused by contaminated water, importa-
ion, or other causes that were not person-to-person transmission,
t was assumed in the base case that 10% of the FOI prior to 1950

as not caused by person-to-person transmission. The synthesized
ge-seroprevalence curves used for calibration of the model com-
ined heterogeneous data from several rural and several urban
ettings, and no longitudinal data from Thailand were available to
llow for more precise validation of changes in HAV susceptibility
ver time. The model-projected mean age at infection over time is
uite robust between the different scenarios considered. Likewise
he model projections for the midpoint of population immunity and
or the HAV incidence rate (whether all infections or symptomatic
nfections) are also relatively similar between scenarios during the
eriod from 1950 to 2000, although the projections in the future
after 2000) for those three types of outcomes depend more sub-
tantially on the assumptions for the different scenarios. Even with
hese limitations, the model still offers valuable projections from
asily obtainable data such as access to clean drinking water and
ates of urbanization.

As of the end of 2014, only 18 middle-income countries were
ncluding HAV vaccination in their national immunization pro-
rams [42]. This means that at present the changes in HAV

pidemiology observed in most middle-income countries are being
riven by improved access to clean water and other infrastructural
nd socioeconomic developments. However, as these countries
hift toward lower endemicity, an ever-growing proportion of
ne 34 (2016) 555–562 561

adults will remain susceptible to HAV infection resulting in an
increased risk of severe clinical disease and mortality; the ben-
efit of vaccination should be considered in such an environment
[6]. When a growing number of adults contracting HAV require
lengthy hospitalization, vaccination may become a cost-effective
option for reducing the burden of HAV on the health system. The
current model did not examine the impact of vaccination on the epi-
demiology of hepatitis A in Thailand, because a hepatitis A vaccine
is not currently included in the national vaccination program. How-
ever, vaccination could be added to the model once the model has
been validated in other settings. Such a model could be very useful
for identifying countries where the shifting endemicity of hepatitis
A makes vaccination a valuable public health intervention.

5. Conclusions

Our model offers valuable mid- and long-term projections of
HAV epidemiology in Thailand. A similar modeling approach might
also be valuable for projecting mid- to long-term trends in HAV epi-
demiology in other countries, including those that are undergoing
transitions in endemicity level but have little historic or recent data
on hepatitis A seroprevalence. A model that includes urbanization
and water access projections may also be useful for projecting the
public health impact of interventions, including various strategies
for targeted or universal vaccination.
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